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Abstract 

For static and spherically symmetric gravitational fields in the general theory of 
relativity, it is found possible completely to avoid tensor analysis. The principle of 
equivalence, illustrated by Einstein's elevator, is used to obtain Schwarzschild's 
equation, on which the three well-known tests of the general theory are usually based. 
The derivation is guided, as with Einstein, by Poisson's (Laplace's, in empty space) 
equation, which here can be solved by simple calculus. 

1. Introduction 

For a central stat ionary gravitational field, a derivation of  Schwarzschild's 
equation is here given without  the use of  tensor analysis. Many authors imply 
that tensors (or spinors) are necessary for the derivation of  this impor tant  
equation with its three well-known tests of  the theory.  It seems, then, that  
the present t reatment  should aid in understanding the role of  the fundamental  
hypotheses,  while making it possible for a larger number  of  students to 
become acquainted with the theory.  

The method first studies the effect of  an observer's own acceleration on 
his measurements of  time and distance. Then the principle of  equivalence is 
used to interpret  the results in terms of  measurements in the gravitational 
field. Finally,  applicat ion is made of  the form of  Laplace's equation 
appropriate to the non-Euclidean metric obtained for the field. 

Many others have a t tempted  t o explain one or more of  the three tests by  
using methods other than Einstein's. Some, in particular, have a t tempted  to 
obtain Schwarzschild's equation by  using the principle of  equivalence, but  
without  using tensors. They have not  been successful, however, some o f  them 
partly because of  their method  of  applying the principle. 1 

1 They indicate that an observer failing from infinity, where he is at rest, carries his 
metric with him. Actually, Schwarzschild's equation, from which measurements of 
time may be determined, contradicts the idea (see Cohn, 1969, who gives a number 
of references). 
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2. The Pr&ciple of Equivalence 

Einstein's principle of  equivalence is based on the equality of  gravitational 
and inertial mass, and is sometimes illustrated by the equal accelerations of 
heavy and light objects falling side by side in a vacuum. It geometrizes 
physics, so that each particle in a gravitational field follows a geodesic, the 
straightest possible path in space-time, the path thus being determined by 
the geometry of space-time itself. The motion, then, is not  influenced by 
the particle's mass, as long as that mass is so small that  it generates a 
negligible gravitational field of  its own. 

If we say no more, we have described only the "weak"  principle of  
equivalence; but we shall also need the "strong" principle (Witten, 1962), 
which many have explained in terms of Einstein's elevator (see, for instance, 
Bergmann, 1942), an enclosure similar to the space capsules of  the present 
day, and subject to the same gravitational phenomena. 

If  the cable on such an elevator is cut so that it falls freely in the earth's 
gravitational field, an enclosed observer cannot distinguish his situation from 
that which would hold if he were far out in interstellar space with no 
acceleration. If  the elevator were in interstellar space and were subjected to 
a force producing the acceleration of  gravity, z the man would observe the 
same phenomena as he would if he were stationary on the earth's surface. 

It is pointed out, however, that effects of  gravitation and acceleration 
are not quite the same for large elevators. The direction of  pull of  gravitation, 
being toward the earth's center, is different for points on opposite sides, 
while no such difference would be observed by the man being accelerated in 
outer space. Further, because of  the inverse square law, the gravitational 
field is stronger on the floor than on the ceiling. The principle must then 
ignore such "t idal"  effects, or effects of  "higher order". The elevators must 
be small. 

We shall here be primarily interested, just as was Einstein in his tensor 
treatment,  in the metric of  space-time, and we shall represent the gravitational 
field in terms of  this metric, with the field arising from the fact that  time 
and distance measurements are different for different points in space. Space 
and time will be liberally sprinkled with all of  the standard clocks and rods 
that may be needed, graduated as finely as desired. 

Each observer is considered to be of  negligible size (his elevator is small) 
so that he makes all observations at a moving or stationary point. The 
principle of  equivalence requires local rates of change with respect to distance 
of his time-rate and distance measurements to be the same as the corresponding 
rates, with respect to the same distance, for an equivalent observer. If  these 
corresponding rates are different, then, by definition, the observers are not 
equivalent. 

In particular, an observer F at a point near the center o f  a large falling 
elevator might, because of  higher-order effects related to the inverse square 

2 In terms of natural measurements of space and time at that point, which we shall see 
are slightly different from those on earth. 
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taw, find that two identical clocks, one at his own location and the other on 
the floor, run at different rates. He must, however, still find that the rate of  
change with respect to either horizontal or vertical distance, at his own 
location, o f  the time rates of  such clocks is zero, just as for the equivalent 
inertial observer U in the special theory of  relativity. 

In other words, F may (and, with the inverse square law, actually does) 
find the time-rate to have a relative maximum at his own height, while U 
finds it to be a constant function of  distance. At points above, below, or 
located horizontally from his own position, F thus need not find the gradient 
of  the time-rate to be zero, although other freely falling obsercers at such 
points (with their slightly different gravitational accelerations) must disagree 
with him. 

We shall also be interested in the equivalence of  a stationary observer G 
on a tower and a second observer A who is accelerated with respect to an 
inertial frame of  the special theory. 

Our method, in applying the principle, will consist of two steps. First, we 
shall obtain equations (3.3) and (3.6), which tell us how the measurements 
made by an accelerated observer A in an inertial frame of  the special theory 
differ from those of  an unaccelerated one, U. We shall then combine (3.6) 
with our principle to find requirements that must be met by the gravitational 
field, where a stationary observer G in the field is to be equivalent to the 
accelerated observer A in the special theory. 

3. Acceleration in the Special Theory 

In Figure 1, in an inertial frame of  the special theory of  relativity, suppose 
that an observer A has an acceleration in the direction of increasing x, and is 
stationary at t = X = y  = 0 (the origin), where t, x, y ,  and z are the measure- 
ments of  time and distance made by an observer U w h o  is always stationary 
in the frame. The acceleration is to be a constant function of  time according 
to A (so that he can be equivalent to the observer G already mentioned), 
although, since we are dealing with relativity, not  according to U's observations. 

Take the variable z, a tA ' s  position, to be his proper time, with ~-= 0 at the 
origin. With ~- = 21 and t = t 1 at x = x l  (the point A 1 in Figure 1), suppose 
him to send a light-pulse, radar fashion, in the direction of  increasing x. It is 
reflected at P, whose coordinates, in equations, we call simply x and t, 
returning to him at A2,  where x = x z, t = tz, and ~- = ~2- Since the velocity 
of  light is constant, A 1P and A2P are straight lines. Their equations will be 
used below. If the pulse is sent in the opposite direction, t 1 and t z are inter- 
changed, as a rex  1 andx2 ,  and ~'1 and ~'2- 

With c as the velocity of  light, A defines time 7 at P and the corresponding 
distance X from A to P as 

=-~(~1 + 72) (3.1) 
and 

X = ½e(~'2 - 71) (3.2) 
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Fig. 1. Accelerated observer A sends light pulse to P and receives reflection. 

just as he would have the right to do if his velocity were constant 3 or, 
neglecting higher-order effects, if he were falling freely. 

We are led to equation (3.1) for the definition of simultaneity for bothA 
and his equivalent observer G by the symmetry with respect to any instant 
of time in each case. For G, in particular, we only suppose that the light- 
pulse moves equally rapidly in opposite directions. From the equivalence, 
we need not add any further argument based on the view thatA takes of the 
situation. The two observers must always agree, except for higher-order 
effects, just as must U and his equivalent freely falling observer F. Equation 
(3.1) is a convenient definition, not a hypothesis of  the theory. We later 
consider other definitions to show that they lead to the same results. 

It will be convenient to postpone further discussion of our definition of 
distance X in (3.2) until after relevant qualitative discussions which follow 
the derivation of (3.6). We shall also need (3.4) and (3.5). 

As in the case of constant velocity in the special theory, there is motion 
here only along the x axis, and no change in transverse distance. 

Since x - x l  = c(t  - t l )  and x - x2 = - c ( t  - t2) from the equations for 
A I P a n d A z P ,  

and 

t = ~ ( t t  + t2 )  + ½(x2 - x t ) / c  

x :  (xl + x 2 )  + c(t2 - h )  

3 For constant  velocity, the Lo~entz equat ions  can be derived f rom these definit ions,  
with the  aid only o f  the  correct expression for proper t ime.  
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The variable x 1 is a function of  t l ,  which in turn is a function of  T1, and 
similarly for x2,  t2, and 7-2- Treating 7" 1 and 7-2 as a pair o f  independent 
variables, with X and 7- as another such pair, and holding X constant, we may 
then write 

OtiS7- = (~t/~tl)(dtl/dT-l)(07-1/~7-) + (Ot/Ot2)(dt2/dT-2)(07-2/07-). 

From (3.1) and (3.2), 

and 

7-1 : 7"- X / c  

T2 = 7- + X / c  

so that, indicating derivatives of  x l  and x 2 with respect to tl and t2 by dots, 

Ot/Or = ~(1 - 21/c) (d t l /dr l )  + 3(1 + 22/c)(dt2/dT-2) 

For 7 constant, we have 

Ox/OX = (bx/bQ)(dt l /dr l ) (Orl /OX) + (Ox/bt2)(dt2/dr2)(Or2/a] 3 

= ½ ( - c  + 21)(dt l /dT1)( -  1/e) + ½ (c + 22)(dt2/dT2)(1/c) 

from which we immediately conclude that 

3t/3z = Ox/3X (3.3) 

The two left members of  equation (3.6), which we now develop, follow 
immediately. The presence of  the right member is of  interest to us primarily 
because it tells us that the others have the same sign as that of  the acceleration. 

Since, from the special theory, 

dr l /d t l  = (1 - 212/¢2) 1/2 

dtl/dza = t/(dT-1/dtl) = 1 (3.4) 

at the origin, while 

clZ t l/dT- t 2 = ( a/clq )(clT-1/at l )-1 ( d h / a z l )  

: _ (d  27-1/dtl 2)(dtl /d.  Q )3 

= ( t  - x~ ~/c2) - ~ / ~  ~1 (dtl /dT-O~/c ~ 

so that 

d2tt /drl  2 = 0 (3.5) 

at the origin. The similar statements are true for the derivatives of  t 2 with 
respect to r 2. 
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Further calculation gives 

(O/3X)(Ot/O7") = ½ [X1 (dtl/dT"1) 2 + x2 (dt2/dT":)2 ]/e 2 

+ 1(1 -- 2¢ 1 / c ) ( d 2 q / d T " 1 2 ) ( - 1 / c )  

+ l ( l  +)¢2/c)(d2t2/d722)(1/c) 

At the origin, then, from (3.3), 

(~lOX)(~tlOr) = (~lOX)(Ox/OX) =alc 2 

where a = 3¢ 1 = 5c 2 at the origin, the acceleration of  A there. 

(3.6) 

4. Qualitative Considerations 

Equation (3.6) apparently does not occur elsewhere in the literature. 
Qualitatively, however, it should not  have been difficult to predict that we 
would find that the left members must be positive for positive values ofa. 
First, those familiar with the special theory could, without the above 
calculation, suspect f rom the Lorentz equation 

7"[1 - (v2/c2)] 1/2 = t - vx/e 2 

that something of  the sort might be true. They know that, for constant 
velocities, if a railroad train moves first to the left and then to the right on a 
track, and if clocks next to the track all give the correct time for a stationary 
frame of  reference those clocks toward the right must first seem to the 
train's passengers to be behind and then ahead of  the others. The passengers 
might then judge that such a change in relative velocity makes the clocks to 
the right run faster. 

The same result is suggested by Figure 1 if we ignore the difference 
between t 1 and 7"1, and that between t 2 and r 2, aswe may when near the 
origin. For P below the x axis, A l P  is less than A 2 P  in length, so that its 
projection on the t axis is also less than that of  A2P. At a later time w h e n P  
is above the axis, A 1P becomes greater than A 2P. A,  however, ignores both 
of  these facts in ascribing the value ½(rl + 7"2) to r atP,  thus supposing that 
the time intervals connected with A 1P and A 2 P  are always equal. His 
supposition produces the same effect as was noted for the passengers on the 
train: For P to the right, t is first less than and then greater than 7", and the 
acceleration thus causes clocks to the right to run faster. 

The distance effect may be seen qualitatively in Figure 2. If the points 
A _ 2 , A _ I , A o , A  > andA 2 on the curve are near the origin and are equally 
spaced with respect to time 7", they are, except for higher-order effects, also 
equally spaced with respect to t. We are justified in making such a statement, 
because we have already, in (3.4) and (3.5), seen something of  the relation 
between t and r on the curve near the origin. But the points C', B ' ,  A o, B, 
and C, on the x axis are not equally spaced. Instead, the distances between 
them increase as we move to the right. Distance x, measured by U, thus 
increases more rapidly than A, who compares it with X, believes it should. 
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A-2 

Fig. 2. A sends pulses to points at different distances. 

It will be useful to note that, according to U , A  is measuring only a part 
of a positive distance x; so that, for the point B, X is O B  minus the x co- 
ordinate ofA 1 (again neglecting higher-order effects). Similarly, for B',  
X is the negative of the sum of the same x coordinate ofA 1 and the 
distance OB' .  For A, U is measuring too much when x is positive. The two 
there then agree that X is less than x, because X and x are the measures of 
different distances. 

They also agree, quantitatively, on equation (3.2). Its justification (as a 
reasonable definition), the completion of which we postponed, may now be 
made to follow from (3.4) and (3.5). From symmetry with respect to the 
x axis, U finds that A measures distance along the axis by sending a light 
pulse over a distance of - c t  x = c t  2 = ~c( t2  - t l )  and back. We may then 
write the quantity 0 2 x / a X  2 in equation (3.6) at the origin as (1/e2)d2x/dt22, 
which in turn may be replaced by (1/c2)d2x/dr22. It then makes no differ- 
ence whether we use ½c(t 2 - t l )  or ½c(~': - 71) for our derivatives at the 
origin. For other points, the proper time is fundamental for A, so it must be 
used, as it is in (3.2). 

The same result may be obtained by comparing x and X from the view- 
point of A or G, but the proof is complicated by the time effect. Time-rate 
registered by standard clocks, and consequently the velocity of light in both 
transverse and logitudinal directions, must be found by A, in terms of his 
own time-rate, to be multiplied by the factor Ot/ar .  In his comparison o fx  
and X, he then may eliminate this time effect by dividing both time-rate 
and light velocity by the same factor, taking the velocity of light once again 
to be the constant c, just as it was for U. U's result follows. 
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5. The Gravitational F i e M  and Spherical Polar Coordinates 

The gravitational field acting on the observer G on the tower must, as we 
have said, be equivalent to the inertial field that A,  accelerated upward, 
experiences. He must then find that the field has increased the time-rate 
above his position and decreased it below, while decreasing the vertical 
distance above and increasing it below. The rates of  change of  these 
quantities are related according to equation (3.6). 

For points on the x axis near G, for all G, we now introduce our gravita- 
tional field in spherical polar coordinates by changing the equation for 
generalized distance, 

ds 2 = c2 d t  2 - dr 2 - rZ ( dO 2 + sin20d~b 2) (5. t)  

familiar in the special theory, to 

ds 2 = C2d t  2 _ w2dr  2 _ r2(dO 2 + sin2Od~ 2) (5.2) 

where C and w are to be variable functions of  r. 
We here are taking r = 0 at the center of  the spherical gravitating mass (the 

sun or earth). The effect of  the field becomes negligible for large r, so that 
(5.2) may there be replaced by (5.1), thus making C = c and w = 1 in inter- 
stellar space, far from the earth or sun. 

We have changed our notation, so that t does not  have the same meaning 
as it did in equation (3.6), and the reader should keep the change in mind 
until the end of  the section. Its differential, dr, is now the differential o f  
proper time (the time-rate o f  his standard clock) for a stationary observer S 
in interstellar space. 

i f  the units of  measurement are chosen so that c = 1, ds, in (5,1) or (5.2), 
is the differential o f  a proper time as observed by S. For other units, in order 
to avoid expressing time in terms of  units of  distance, we divide by c, so that 
proper time is expressed by the differential ds/c. For zero velocity, the 
differentials o f  space coordinates are zero, so that, in (5.2), ds/e  = Cdt /c  is 
the differential o f  proper time. 

The quantity r, from the manner in which r 2 occurs as a coefficient in 
(5.2), must be the quotient o f  the circumference o f  a central circle by 2rr. 
The values of  0 and 4) may similarly be determined by the metric on a central 
sphere. All of  these measurements must be made by the observer S or another 
unaccelerated observer G. 

At G (on a tower of  indefinite height), we take r = q ,  C = 6"1, and w = Wl. 
We identify the x axis with the radial line through G, where x = 0. The 
differential o f  proper time for G is now seen to be C l d t / c ,  so that he finds 
the proper time rate for others to be the quotient ( C d t / c ) / ( C l d t / e )  = C/C1. 
These others must be stationary, whether they are in free fall at the moment 
or with no acceleration. 

In the earlier notation o f  equations (3.3) and (3.6), the proper time rate 
for other stationary clocks is judged by A (when he is momentarily stationary) 
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as 3t/3~. Taking A and G as equivalent, we then identify 3t/3-r with C/C1 in 
(3.6). 

We next identify dX, the differential of  distance on the axis as judged by,4,  
with wdr, the differential of  radial distance as judged by G. We shall now see 
that it follows that dx must be identified with wldr. First, wdr/(wldr) = 1 
at G, just as 3x/OX = 1 at x = 0 on the x axis. Further, just as C1/c, F's time 
rate with respect to that in (5. t) (before the imposition of  the gravitational 
field), has a gradient of  zero, so must the corresponding rate of  radial measure- 
ments, so it is the constant w t . In each case, according to the principle of  
equivalence, the gradient produced by the field for G is nullified for F by 
their relative acceleration. 

From our replacements in (3.6), we thus have the equation 

(d /dr) (C/Cl)  = (d /dr) (w1/w)  

for r = r 1. From simple calculus, this becomes 

( dC/dr) / C1 = - w  1 ( dw /dr)/w2 

At G, where r = r 1, this may be written 

(dC/dr) l/C~ = -(aw/dr) 1/wl 

Since r 1 is arbitrary, as long as G is in empty space, 

Integration gives 

(dC/dr)/C = - (dw/dr) /w 

t n C ;  - l n w  + const 

and, since C = c and w = t in interstellar space, 

lnC = -Law + lnc = ln(e/w) 

It follows that 

(5.3) 

C = c/w, or w = c/C (5.4) 

In equation (5.2) of  this section, we have made the assumption, as in (3.1), 
that the velocity o f  light is equal in opposite radial directions, as is apparent 
if we take ds = 0 to study the behavior of  light. It is well known in the 
literature (Tolman, 1934) that the drdt term otherwise obtained may be 
eliminated by a substitution for the time t. There is no fundamental difficulty, 
then, with our definition expressed by (3.1). 

6. The Energy Equation and the Law o f  Areas 

In the special theory, a particle subject to no force follows a straight line 
with fds an extremum. In (5.2), we continue to make the integral an extremum, 
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as required by the weak principle of  equivalence, thus taking the path as near 
to a straight line in our new metric as possible. 

From the calculus of  variations, we then have (Akhiezer, 1962) 

C 2 d t /ds  = const (6.1) 

tile quantity on the left side being obtained by taking the partial derivative of  

C 2 (dt /ds)  2 - w  2 (dr/ds) 2 - r  2 [(dO/ds) 2 + sin20(dia/ds) 2] 

with respect to dt /ds .  This is permitted because of  the independence of  the 
coefficients of  (5.2) of  t. 

Similarly, restricting ourselves to plane motion by taking 0 = ~n, we have, 
noting that the coefficients are independent of  q5 as well as o f  t, 

r 2 dO/ds = const (6.2) 

the law of  areas in general relativity. 
The similar quantities for rectangular coordinates in the special theory, 

c2dt /ds ,  dx /ds ,  dy /ds ,  and dz/ds ,  when multiplied by moe,  where mo is the 
rest mass of  a body in interstellar space, are the energy and the rectangular 
components of  the momentum. If we also multiply the quantities in (6.1) and 
(6.2) by moc,  it is natural to call the first product the energy and the second 
the angular momentum. Indeed, for a particle moving from interstellar space, 
where C = c, into the gravitational field o f  the sun, the two expressions for 
energy are equal. 

We thus have the equation for the energy E of  a small mass (small, because 
it is only the central gravitational field which we are considering), 

m o c C 2  dt /ds  = mocC/(1  - v2 /C2)  1/2 = E (6.3) 

where 
v 2 = (wdr /d t )  2 + r 2 [(dO~dr) z + sin 20(d~/dt) ~ ] 

and where it is understood that the energy is being judged by a stationary 
observer S in interstellar space. 

Equation (6.3) is a rather remarkable formula, which, in spite of  its 
simplicity, apparently does not occur in the literature. We have actually 
proved it only for v numerically greater than the escape velocity, so as to 
make use o f  the situation near the observer S in interstellar space. However, 
the formula must also hold for smaller v, as we shall now see. 

We have already noticed that the differential of  proper time for a stationary 
observer in the field is Cdt/c. It follows that, if t is to be replaced by this 
proper time, the velocity v must be replaced by u = v/ (C/c) ,  so that v / C  = u/c: 

The special theory holds in the immediate space-time neighborhood of  a 
stationary observer G in the field, and he finds the energy of  a small mass 
there to be 

m l c 2  /(1 -- u2 / c2 )  I/2 = mlc2 / (1  - v2 /C2)  1/2 

where rnl is G 's  measurement o f  the mass which would be m o at S. 
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The amount of  energy emitted by a change in velocity from v l to v2, at 
G and according to G, is 

m l c 2 / ( 1  - v12/C2) 1/2 _ talC2/(1 - 1322/C2) 1/2 

and similarly for v 3 and v4. If  these two emitted energies are equal, we may 
multiply each by ( m o / m l ) ( C / c )  to obtain the equation 

rnocC [ 1/(1 - v 12/C 2)a/2 _ 1/(1 - v ~2 /CZ)1/2] 

= mocC[1/ (1  - v 32 / C2)  1/2 - 1/(1 - v42/C2)  v2 ] 

For sufficiently large vl and v2, the left member is an emitted energy 
according to observer S. The right side, then, must be the same, regardless 
of  the magnitudes of  v 3 and v 4. Assuming only that Vl, vz, and v a are greater 
than the velocity of  escape (as we may for all possible v4), it follows that 

moc C/ (  I - v 4 2 / C 2 )  1/2 

is the energy, according to S, even for small v 4. 
It is then possible to take v = 0 in (6.3). Doing so, we obtain the potential 

energy mocC. 

7. The  gxzplacian m the Non-Eucl idean Metr ic  

Einstein, in his tensor treatment,  looked for "an analogue of Poisson's 
equation" (Laplace's in empty  space). In his earlier work, he used a variational 
principle (Einstein et al., 1973), while he later employed different methods 
for arriving at his analog (Einstein, 1956). 

For those who are familiar with the many applications of  Poisson's (or 
Laplace's) equation to problems in electrical potential, magnetic potential, 
the flow of  fluids, the flow of  heat, etc., it is not  surprising that Einstein 
would think of  it. 

For the classical gravitational field, Laplace's equation emerges from the 
idea that the total  gravitational flux into any region of  empty  space is zero, 
while Poisson's equation gives the flux into a region which may be occupied 
by masses. 

For our own non-Euclidean metric, the flux across the surface o f  a sphere 
of  surface area 47rr 2, concentric with the sun, is proportional to the product 
of  the area and (1 /w)dC/dr ,  the rate of  change of  the potential with respect 
to distance as given by standard rods, perpendicular to the surface. This 
quantity must be constant, for otherwise there would be a net flux into the 
region between two such surfaces. 4 We then have 

(1 /w)r  2dC/dr = const (7.1) 

4 Probably the simplest application of Laplace's equation is to temperature C. If the 
heat content of no region changes with time, the equation is satisfied. 
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The actual Laplacian for a space metric 

do2 = h lZdul  2 + h22du22 + h32du32 

is (Arfken, 1968) 

[(O/Out) (h2h3hl  10C/OUl) + (O/~u2)(h3h I h21 OC/Ou2) 

+ (3/Oua)(h 1h2h31 OC/3u3)] / (hi  h2h3) 

which, for us, gives the Laplace equation 

(1/w)(d/dr) [(r2/w)aC/dr]/r 2 = 0 (7.2) 

Integration of (7.2) again gives (7.1). 
Our equating the Laplacian to zero may be said to parallel Einstein's 

setting a certain tensor equal to zero in empty space. 
Although it is also possible to obtain (7.1) by applying Hamilton's principle 

to the energy of the gravitational field, we shall not do so. Any such develop- 
ment, providing a bridge between mathematical equations and the physical 
world, must necessarily involve assumptions. 

8. Schwarzschild's Equat ion 

From (7.1), (5.4), and (5.2), there must be a constant k for which 

r 2 CdC/dr = k 

and consequently 

C 2 = c 2 - 2k /r  

(8.1) 

(8.2) 

Schwarzschild's equation, 

ds 2 = c 2 (1 - 2 k / c 2 r ~ t  2 - dr2/(1 - 2k/c2r) - r2(dO 2 + sin20&b 2) 
(8.3) 

follows from (5.2), (5.4), and (8.2). 

The inverse square law, in the form 

d2r/ds 2 = _k / c2r  2 

may be obtained from (8.3) and the energy equation if it is assumed that 
both dO/ds and d(~/ds are zero. It is also possible to start with this law and 
obtain (8.3) without Laplace's equation. 

The three well-known tests of the general theory, discussed in many books 
on the subject (Bergmann, 1942, pp. 212-222), spring from Schwarzschild's 
equation. With the aid of the energy equation and the law of areas, it may 
be used to find the orbit of a planet around the sun, and thus leads to the 
motion of the perihelion of that orbit. The value of C alone, in the equation, 
leads to the red shift of spectral lines in the gravitational field. The bending 
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of  light as it passes the sun is obtainable from the equation with the aid of  
the appropriate form of  the law of  areas. We here must take ds = 0 and f d t  
a minimum to f ind that  

r2 d~/(1 - 2k/c2r)dt  = const 

Conclusion 

We have seen that  tile principle of  equivalence demands a relation between 
time and distance measurements indicated, for a central field, by  (5.4). We 
have then found reason to define empty  space, mathematical ly,  as that  region 
where the Laplacian, in our metric,  of  the gravitational potent ial  is zero, 
just as Einstein took  one of  his tensors to be zero there. We have not  even 
mentioned the principle of  general covariance, often thought to be one of  
the main foundat ion stones of  the theory  (Hoffmann,  t972).  

Max Born, in a letter to Einstein, once spoke o f  " the  horrible complica- 
tions of  the formalism" of  the general theory  (Born, 1971). The present 
t reatment  has been an effort  to avoid some o f  these and to provide new in- 
sight into the structure of  the theory.  
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